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Abstract. We analyze general two-species stochastic models, of the kind generally used for the study of
population dynamics. Although usually defined a priori, the deterministic version of these models can be
obtained as the infinite volume limit of many stochastic models (which are necessarily defined by more
parameters than the deterministic one). It is known that damped oscillations in a deterministic model
usually correspond to oscillatory-like fluctuations in their deterministic counterparts. The quality of these
“oscillations” depends on details of each stochastic model. We show, however, that the parameters of the
deterministic system are generally enough to obtain very good bounds for the quality of “oscillations” in
any of its stochastic counterparts. These bounds are shown to depend on only one dimensionless parameter.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 02.50.Ey Stochastic processes –
05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

It is well known that the dynamics of many systems
of two species can display an oscillatory behavior in the
populations of both agents. This happens in predator-prey
systems [1], in models of measles epidemics [2], in chemical
systems such as those exemplified by the Brusselator [3],
etc. These systems are usually modelled by a set of two
coupled ordinary differential equations, which are assumed
to represent a macroscopic level of description of the sys-
tem. Oscillations can appear in these models as limit-cycle
solutions to the equations. However, it frequently happens
that the macroscopic model only has damped oscillatory
solutions, even though the modelled system displays sus-
tained oscillations in the same region of parameter val-
ues. Examples of this are not uncommon in population
dynamics (see, e.g., the discussion in [4] with regard to
predator-prey and measles problems).

It has often been noted that the stochastic counter-
part of these models — assumed to represent a more mi-
croscopic description of the same system — usually do
display a kind of sustained oscillatory behavior, with a
frequency very similar to the one of the damped solutions
of the differential equations [5–7] (see Fig. 1 for an exam-
ple based on a susceptible-infected epidemic model). These
oscillations are said to be generated by environmental [8]
or demographic noise [9]. The problem is that stochas-
ticity precludes a clear-cut definition of “oscillations” for
such systems.
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Fig. 1. Deterministic dynamics (smooth lines) and one
stochastic realization (fluctuating lines) of an SI epidemic
model (susceptible and infected, respectively A and B, with
populations m and n and densities φA and φB). The dynam-
ics includes birth and death processes in both populations,
and contagion. A self-limiting intraspecific competition mech-
anism is implemented as in [9,12], with a total system size
Ω = 5 × 105. See the text for details of the model.

The usual approach is to use a quality factor for the
stochastic fluctuations. This factor is defined as some rel-
ative measure of the width of a peak of the power spec-
trum of the fluctuations [10]. The narrower this peak is,
the more oscillatory the fluctuations will look. Of course,
this quality factor depends on the parameters defining the
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corresponding model. It is natural to hope that different
stochastic counterparts of the same deterministic model
could display very different quality factors. But, how dif-
ferent could they be? This is the question we address in
this article, for systems of two populations.

We define a dimensionless quantity, ε, that depends
solely on the parameters of the deterministic model, and
show that both the quality factor and the position of the
peak are bounded by functions of only this quantity. For a
wide range of values of ε, the upper and lower bounds are
very close, showing that the parameters defining the de-
terministic system give a very good characterization of the
oscillatory quality of the fluctuations in any of its stochas-
tic counterparts. In other words, we show that the quality
of the oscillations is only weakly dependent on the details
of the underlying demographic noise.

Let us consider systems of two populations, A and B,
described by stochastic variables m(t) and n(t). The state
of the system is defined by the joint probability P (m, n; t)
that the system has m individuals of species A, and n
individuals of species B. The transition from a state with
(m, n) individuals to a state with (m+i, n+j) individuals
takes place at a rate:

T (m + i, n + j|m, n) = f(Ω)Tij

(m

Ω
,

n

Ω

)
, (1)

where −k < i < k and −k < j < k. Ω is a scale pa-
rameter that governs the fluctuations of the stochastic
evolution. Its precise definition depends on the system,
but one chooses it in such a way that for large Ω the
fluctuations are small. It usually represents the volume
containing the reactants in chemical systems [11], or the
available resources in biological ones [9]. The constant k
gives the maximal number of elements that can appear, or
disappear, from a given population at each step of the dy-
namics. The most common choice are one-step processes,
with k = 1.

For the purpose of illustrating the kind of systems
just defined, it is worth introducing a simple susceptible-
infected epidemic system (SI). The total population of a
biological species is divided into two classes: susceptible
individuals (S) and infected ones (I), corresponding to the
species A and B just discussed. The discrete populations
of S and I are m and n. The total possible population is
demographically limited by a system volume Ω, measured
in units of individuals. Reproduction takes place only if
space is available, thus representing indirect intra-specific
competition. This available space (or any other resource)
is modeled by a fictitious population E: Ω = m + n + E
(see [12] for details). Each one of the three distinct (one-
step) processes at the individual level: reproduction, death
and contagion, involves one or more possible transitions
in the microscopic state of the system. Each one of these,
in turn, is characterized by a transition probability Tij .
Let us consider that individuals reproduce asexually, with
both S and I giving birth to new susceptible members. In
addition, let us say that there is no vertical transmission
of the infection, so that no infected are born. The usual
representation of birth in the form of chemical reactions

reads:

birth to susceptibles: S + E
bA−−→ S + S,

birth to infected: I + E
bBA−−→ I + S, (2)

where the parameters above the arrows represent the rates
at which each of the processes occur. The transitions rep-
resented by equations (2), incrementing in 1 the popula-
tion of susceptibles, take place in the system with a prob-
ability:

T10 = 2bA
m

Ω

E

Ω − 1
+ 2bBA

n

Ω

E

Ω − 1
. (3)

The factor 2 represents the two distinct ways of choos-
ing the pairs {S, E} and {I, E} for interaction in equa-
tions (2).

Death of individuals of both classes, in a similar way,
can be found to occur with probabilities T−10 = dSm/Ω
and T0−1 = dIn/Ω respectively (with appropriate death
rates). Contagion, finally, involves steps in the two pop-
ulation classes, with: T−11 = 2pmn/[Ω(Ω − 1)], where p
is the rate of contagion in pair interactions of a suscepti-
ble and an infected individuals. All the specific examples
shown in this work correspond to implementations of this
SI model, either in analytical calculations or in numerical
simulations of the stochastic model.

We return now to the general treatment of two-species
models. The evolution of the probability P (m, n; t) is given
by the master equation [11]:

∂P (m, n; t)
∂t

=
∑
ij

P (m − i, n − j; t)Tij

(
m − i

Ω
,
n − j

Ω

)

−P (m, n; t)
∑
ij

Tij

(m

Ω
,

n

Ω

)
, (4)

where, as in the rest of this article, the summation indices
run from −k to k.

Except for a few simple cases, this equation is ex-
tremely difficult to solve exactly. For this reason many
methods have been devised to look for approximate solu-
tions. One such method is van Kampen’s expansion [11],
which is a systematic expansion in terms of Ω−1, the first
order of which reproduces the macroscopic equation. In
the following we sketch the main steps leading to the series
solution (a detailed account can be found in van Kampen’s
book [11]).

If one assumes that, at time zero, the system is in a
state where both populations have well defined macro-
scopical values, P (m, n) = δ(m − m0)δ(n − n0), with the
initial values of order O(Ω), it is reasonable to expect that
at later times P (m, n) will have a sharp peak at some po-
sition of order O(Ω) (in both populations), and a width of
order O(Ω1/2). That is, the fluctuating variables will sat-
isfy m = ΩφA +

√
ΩξA and n = ΩφB +

√
ΩξB, where the

variables φ represent the “macroscopic” evolution, while
the stochastic variables ξ represent fluctuations around
them. Observe that this ansatz implies that the fluctua-
tions vanish with the system size in a prescribed fashion.
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Replacing this in equation (4), equating terms of the same
order in Ω and adequately rescaling the time, one obtains,
for the leading order:

φ̇A =
∑
ij

i Tij(φA, φB) ≡ CA(φA, φB),

φ̇B =
∑
ij

j Tij(φA, φB) ≡ CB(φA, φB). (5)

These equations, called deterministic or macroscopic, are
usually the starting point of many models of chemical and
biological systems. They are generally written down from
macroscopic considerations of the population dynamics,
disregarding its individual level origin. To analyze the dif-
ferences between the stochastic (individual level) and the
deterministic (population level) approaches one usually
chooses a stochastic model that gives the right determin-
istic equations.

Let us first analyze briefly the dynamics of the macro-
scopic system. Its equilibria are obtained by solving the
system CA(φA, φB) = CB(φA, φB) = 0, and their stability
is studied by means of a linear stability analysis. When the
system is close to equilibrium, its behavior is determined
by the determinant ∆ and the trace T of the Jacobian
matrix Ci,j = ∂Ci

∂φj
at the fixed point:

∆ = CA,ACB,B − CA,BCB,A,

T = CA,A + CB,B. (6)

In the region of parameter space where the equilibrium is
a focus, the system performs damped oscillations charac-
terized by a damping factor and a frequency of oscillation
given by, respectively:

γ = |T |/2,

ω2
d = ∆(1 − ε2/4), (7)

with
ε = |T |/

√
∆. (8)

The underdamped regime is therefore given by the condi-
tion ε < 2. When ε > 2 the equilibrium is a node, and the
solutions of the macroscopic system do not oscillate. We
show below that this parameter, which depends only on
the parameters of the macroscopic equation (5), plays a
fundamental role in the characterization of the oscillations
of stochastic origin. Notice also that the number of oscil-
lations observed in the characteristic time γ−1 depends
only on ε (for small ε, it is just 1/πε).

The following order in the van Kampen expansion
gives the evolution of Π(ξA, ξB , t), the joint probability
function of the fluctuations around the macroscopic vari-
ables φ, in the form of a Fokker-Planck equation. To look
for oscillations in the fluctuations it is easier to work with
the equivalent Langevin equations, as shown in [9]:

ξ̇A = CA,AξA + CA,BξB + LA(t)

ξ̇B = CB,AξA + CB,BξB + LB(t) (9)

where LA(t) and LB(t) are delta-correlated Gaussian
noises of zero mean, satisfying 〈LA(t)LA(t′)〉 = DAδ(t −

t′), 〈LB(t)LB(t′)〉 = DBδ(t − t′), and 〈LA(t)LB(t′)〉 =
DABδ(t − t′). The noise intensities are given by:

DA(φ∗
A, φ∗

B) =
∑
i,j

i2 Tij(φ∗
A, φ∗

B),

DB(φ∗
A, φ∗

B) =
∑
i,j

j2 Tij(φ∗
A, φ∗

B), (10)

DAB(φ∗
A, φ∗

B) =
∑
i,j

ij Tij(φ∗
A, φ∗

B),

where the stars denote the equilibrium values. The noises
LA and LB are often called demographic because they
stem from the discrete nature of the components of the
system.

These equations, however, can be considered from a
different point of view: they can result from a linearization
of a deterministic model with small environmental (i.e.
external) noise [13,14]. In such a case, the parameters DA,
DB, DAB are independent from the parameters CA and
CB. Therefore, all the results given below apply both to
environmental and demographic noise.

By Fourier transforming equations (9) it is straight-
forward to obtain the power spectrum of the fluctuations
around the deterministic equilibrium [9]. In the following
we concentrate on population A. The corresponding ex-
pressions for population B are obtained by exchanging A
and B in all the subindices. The average power spectrum
of ξA is

〈SA(ω)〉 =
[

FA + ω̂2

(1 − ω̂2)2 + ω̂2ε2

]
DA

∆
, (11)

where

ω̂2 = ω2/∆,

FA =
C2

A,BDB + C2
B,BDA − 2CA,BCB,BDAB

∆DA
. (12)

We stress that FA (and correspondingly FB), through its
dependence on CA, CB , DA and DB, depends ultimately
on the transition probabilities that define the model. No-
tice also that in the case of external noise, FA (and FB)
and ε are independent parameters.

It is straightforward to see that 〈SA(ω)〉 is either mono-
tonically decreasing or it has a single maximum at

ω̂2
A = −FA +

√
(FA + 1)2 − ε2FA. (13)

The condition of positivity for the argument of the
square root gives the region in phase space where the
power spectrum has a single maximum. Notice that for
ε <

√
2 this condition is fulfilled regardless of the exact

dependence of FA on the parameters of the model. On the
other hand, if ε >

√
2, the power spectrum has a peak

only if FA < (ε2 − 2)−1.
If we consider ω̂A as a function of FA, with ε fixed (i.e.

we only vary the noise), it is straightforward to see that it
is a positive decreasing function. Therefore, it is bounded:

(1 − ε2/2)Θ(ε −
√

2) < ω̂2
A < 1, (14)

where Θ is the Heaviside step function.
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Fig. 2. ω̂2
A and ω̂2

B for the same SI model as in Figure 1.
The points correspond to a uniform scanning of a portion of
phase space: bA = bBA = 0.1, dA ∈ (0, 0.2), dB ∈ (0, 0.5),
p ∈ (2dB , 3.2). The full lines show the bounds of equation (14),
while the dashed one corresponds to ω̂d = ωd/∆. The arrows
point to the values corresponding to the parameters used in
Figure 3.

In particular, this implies that in all the possible
stochastic models that lead to the same deterministic
equations (same C’s, different D’s) the position of the
maximum can only vary within a finite range, that shrinks
with ε.

For small ε, ω̂2
A approaches the value 1, which means

that not only the frequencies of possible oscillations for
both populations become close, but also that they be-
come close to the frequency of the damped oscillations
of the deterministic model (which tends to ∆ as ε → 0).
It is in this regime that the populations show the coher-
ent dynamics characteristic of stochastic oscillations. This
motion will be further characterized below by the quality
of the spectrum peak. Figure 2 shows ω̂2

A and ω̂2
B as func-

tions of ε for the epidemic model presented in Figure 1, for
a wide range of system parameters. The bounds given by
equation (14) are shown by continuous lines. Each point
represents the normalized squared frequency for one set of
parameters, for both populations. The deterministic fre-
quency, ω̂d = ωd/∆, is also shown, to emphasize the differ-
ence between the three frequencies present in the system.

When
√

2 < ε < 2 there can be some stochastic models
for which no peak is present in S(ωA) or S(ωB). And, for
some values of FA or FB, it can happen that the power
spectrum of either φA or φB has a maximum even if ε > 2,
i.e. even when the deterministic system does not display
damped oscillations (see Fig. 2: all the points to the right
of ε = 2 correspond to systems with a peak in the spec-
trum of the susceptible (A) population, no peak in the
infected (B) one, and no damped oscillations in the deter-
ministic model). These two features show that the peaks
of the stochastic power spectrum on the one hand, and
the deterministic damped oscillations on the other, are
not necessarily closely related.

The above discussion establishes the conditions for the
existence of a peak in the power spectrum of one or both
populations. That is, for the existence of a preferred fre-
quency in their dynamics. But, should all peaks in the
power spectrum be regarded as “oscillations”? The an-
swer to this question is certainly negative, and leads to
the definition of the quality factor of the fluctuations. It
is natural to expect that the narrower the peak, the more
closely the fluctuations will resemble an oscillatory move-
ment. The quality factor is therefore defined as a measure
of the relative width of the power spectrum peak. A usual
measure is the ratio between the height of the peak and
its width: Qst ∼ ∆f

f [10]. Even though this definition is
very natural in the analysis of time series, it usually leads
to very complicated formulas in analytical treatments. Be-
sides, it can only be defined when the spectrum reaches
a value equal to half the height of the peak, both to the
right and to the left of the peak. Unfortunately there are
some cases when this does not happen. For these reasons,
we use a slightly different definition of quality. In princi-
ple, it should be possible to translate the bounds we find
to related bounds for any quality factor.

Given a power spectrum of the form (11) we define the
quality of a peak at ωpeak as

QA(ωpeak) =
ωpeak〈SA(ωpeak)〉∫ 〈SA(ω)〉dω

. (15)

This quantity is dimensionless and scale invariant. It is re-
lated to Fisher’s kappa, which measures the non-stationa-
rity of a signal, given its periodogram [15]. For functions
with only one peak, QA increases as the peak sharpens.
This definition of quality is very simply related to the
more usual one in many cases: QA = Qst for a triangular
and rectangular peak, QA = 2

√
ln 2/πQst for a Gaussian,

QA = 2
π Qst for a Lorentzian, etc. Furthermore, it is easy

to see that Qst > QA/2 for any power spectrum. Thus any
lower bound for QA will also be a lower bound for Qst.

For power spectra of the form (11), QA can be readily
calculated (using that

∫ 〈SA(ω)〉dω = 〈ξ2
A〉, see [11]):

QA(ωA) =
2ω̂Aε

(ω̂2
A − 1)2 + ω̂2

Aε2

(
FA + ω̂2

A

FA + 1

)
. (16)

The quality QA diverges as ε vanishes, regardless of the
exact dependence of FA on the parameters of the model.
Therefore, one can assure that the corresponding time se-
ries will look oscillatory when ε is small enough (see Fig. 3
for an example of this). In such a case we have already
shown that the frequencies of both populations are very
close, and also very close to the frequency of the determin-
istic damped oscillations. Note that the limit ε → 0 is not
the regime of interest in applications, since this situation
is structurally unstable (it gives a center in the linearized
deterministic system). On the contrary, one would be in-
terested in the regime of small but positive ε, for which
the quality can be large enough to ensure the observation
of stochastic oscillations.

But, could it also happen that, for large values of ε,
when the frequencies of populations A and B can be rather
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Fig. 3. Two stochastic realizations of the SI model, with dif-
ferent qualities. The insets show the corresponding analytical
average power spectra. Only the infected population is shown.
The arrows in Figure 2 point to the corresponding frequencies:
ωA ∼ ωB ∼ ωd for the good quality case shown in (a), and
ωA � ωB for the bad quality one shown in (b). Ω = 105.

different, one gets very sharp peaks? It can be shown that
this is not the case by giving bounds to QA that depend
solely on ε.

To calculate these bounds, let us consider QA as a
function of FA, for ε fixed. It is not difficult to see that
if ε <

√
4/3 this function has only a single minimum at

F = (1+(4−3ε2)−1/4)/3, whereas if
√

4/3 < ε <
√

2, QA

is monotonically decreasing. This leads to the bounds

f(ε) < QA(ω) <
2
ε
. (17)

with

f(ε) =

⎧
⎪⎪⎨
⎪⎪⎩

2
ε

2+
√

4−3ε2

4

√
3

1+
√

4−3ε2
if ε <

√
4/3

2
ε

√
1−ε2/2

1−ε2/4 if
√

4/3 < ε <
√

2
0 otherwise.

(18)
These two bounds are very close when ε < 1: the relative
distance between the two is smaller than 9% (see the in-
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Fig. 4. QA and QB as functions of ε for the SI model of Fig-
ure 1. The points correspond to the same portion of phase space
as in Figure 2. The lines show the upper and lower bounds of
equation (17). The inset shows the relative difference between
the bounds (δQ = [2/ε − f(ε)]/2/ε).

set of Fig. 4). This bounds the relative error made when
approximating the quality by one of the bounds.

The upper bound shows that, when ε is not small,
the peak cannot be arbitrarily sharp. On the other hand,
the lower bound shows that, when ε is small the peak is
sharp for all the stochastic counterparts of a deterministic
model. In Figure 4 we illustrate this by showing several
values of QA and QB for the epidemic model, along with
the corresponding bounds.

One practical question remains: what is the critical
quality value above which one can be sure that the time
series will indeed “look” oscillatory? As it is to be ex-
pected, the continuous nature of Q precludes a conclusive
answer. From exhaustive observations of different models
we find that when Q(ωpeak) > 4, the oscillations are well
defined and notably different from a noisy evolution (see
Fig. 4). An evaluation of the values of ε corresponding to
published oscillating systems also suggest that ε < 0.5 is
a good rule of thumb for the search of stochastic oscilla-
tions. Our bounds (Eqs. (14) and (17)) imply that in this
range the quality of these oscillations will be always larger
than 4, and that the relative difference between their ω
(both between models and between populations) will be
smaller than 5%.

In summary, we have shown, by defining and bound-
ing a quality measure, that the parameters that define a
deterministic model are enough to characterize, to a sur-
prising degree of accuracy, how oscillatory the time se-
ries of any of its stochastic counterparts looks like. We
find that good stochastic oscillations are clearly present
only when ε is small. Although this behavior was to be
expected, and it is often loosely alluded to in the litera-
ture [13], our bounds provide a quantitative (and accurate)
measure of this effect. For increasing values of ε, there is a
smooth transition to a behavior that is indistinguishable
from noise. This means that, given a deterministic model,
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one can know, using the bounds (17), whether the time se-
ries given by any stochastic counterpart of the model will
look oscillatory or not. In addition, we have shown that,
when oscillations are clear, the corresponding frequencies
of both populations will be close to each other and to the
frequency of the damped oscillation of the deterministic
system.

Although our results have been obtained for a partic-
ular measure of the quality of stochastic oscillations, we
believe that other measures should behave in much the
same way, but probably with more complicated bounds.

Given that our conclusions are based on the analysis
of the first two terms of the systematic van Kampen’s ex-
pansion of the master equation, they are exact only in the
limit Ω → ∞. These analytical results, nevertheless, com-
pare well with the numerical observations made on finite
systems. More details about the validity of the expansion
for finite systems will be given elsewhere.

It must be stressed that two-species models as the ones
studied here provide only the roughest of approximations
to real systems, because they do not take into consid-
eration the space where these species move (full mixing
hypothesis). But at this level of description non-spatial
models with more species have also proven to be useful.
An example of these are the three-species systems studied
in [16,17], in which the three species succeed each other
cyclically (as in an SIRS model). It would therefore be
interesting to extend our results to systems of more than
two species and to spatial models (where every patch of
landscape plays the role of a species, as it is shown in [12]).
Unfortunately, the calculations in this case are much more
complicated because of the large number of parameters
of these models, thus precluding the derivation of simple
expressions like equations (14) and (17). But numerical
bounds could certainly be very useful, provided it can be
shown that they are close enough.

We are grateful to D.H. Zanette, E. Andrés, I. Peixoto and
A. Aguirre for valuable discussions. We acknowledge financial
support from ANPCyT (PICT-R 2002-87/2), CONICET (PIP
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